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A Story Starts with a Title

(and a poster starts with a title block)



Examples of Poster Title Blocks
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Advisor: Elke Rundensteiner

Mobile Depression Screening with Time Series

of Text Logs and Call Logs rEM UTIVO

ML Tlachac, Veronica Melican, Miranda Reisch, Elke Rundensteiner
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4-page paper @ |IEEE BHI-BSN 2021
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"Worcester Polytechnic Institute, {UMass Amherst r_M U TI V O
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What is in a Story?

(and by extension a poster?)



Story Sections
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What is in an Introduction?

Problem

Motivation Related Work

Approach Contributions

Statement
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Examples of Poster Introductions

 rrrrr—

2 in 5 graduate students
suffer from depression?.

Despite being the most
treatable mental health
disorder?, it takes 11 years
on average to get treated?.

Suicide is the 2™ |leading cause of death for US
adults under 30. Globally depression is the
leading cause of disability, costing $1 trillion®.

Given texting popularity, text messages could be
used to passively screen for depression but only a
third of people are willing to share this modality®.

10

Research Questions

Given logs, is it best to screen for depression with:

ahwWN =

Text logs or call logs?

Incoming, outgoing, or all communications?
Communication count, average length, or contacts?
Aggregation intervals of 4, 6, 12 or 24 hours?

Time series or features from time series?

Research Motivation

The suicide rate has increased by 35%
since 1999 and suicide is the 2nd leading
cause of death for US adults aged 10-34".

The content of text messages has been
leveraged to screen for depression?. Can
texts also screen for suicidal ideation?

Worcester Polytechnic Institute
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PHQ-9 score Interpretation? Treatment

Frequency

Examples of Poster Data Descriptions

0-4 Not Depressed NA
5-9 Mildly Symptomatic Monitor
10-14 Mild Depression Support
15-19 Moderate Depression Treatment
20+ Severe Depression  Treatment

Moodable*/EMU data: retrospectively-harvested
crowd-sourced Smartphone & social media data.
PHQ-9 was deployed to obtain a depression label.
151 participants sent texts within the last year®.

Distribution of Text PHG-9 Scores Farticipant Texts

1800

1400

1200

1200

LT

Cuas nitity

800

Ann.

Dataset Moodable EMU SADD DepreST
Year 2017-2018 2018 2020-2021 2021
Participants 300+ 60+ 300+ 400+
Population MTurk MTurk Students Prolific
Labels PHQ-9 PHQ-9,GAD-7 PHQ-9  PHQ-9, GAD-7
Text Messages Content Content Only Logs Content

We used the SMS texts in the Moodable?
and EMU* datasets. Suicidal ideation was

self-reported. We compared
(interval) and multiple weeks

weeks

individual

(cumulative) of texts. Week 1 is the same.

Two weeks of logs from the Moodable' and EMU?
datasets labeled with PHQ-9 depression screening
scores®. If PHQ-9 = 10, screen positive for depression.

PHQ-9 Distribution
Text Participants

Screened |
negative

- Call Participants

Screened
positive

Screened
negative

Screened
positive

a0 |

Frequency

Frequency

I
I
51 I
I

s mges

0 5 10 1=
PHO-9 Score

] I r-1
PHO-9 Scora

The 312 participants shared different types of logs:

Incoming | Outgoing

245 290 99
212 182 197

All

Text logs
Call logs

Interval Weeks Cumulative Weeks
Week | Participants  Texts  Participants Texts
1 a7 2349 a7 2349
2 22 2381 G2 4730
3 49 1961 62 6691
e G0 2280 GG 8971
5 o4 2018 GG 10989
6 49 1821 66 12810
7 45 1933 GG 14743
8 43 1201 GG 15944
Dataset SADD DepreST
Participants 302 440
Population Students Prolific
Labels PHQ-9 PHQ-9, GAD-7
Audio Recordings 200 400
Transcripts 115 377
Text Reply 298 NA
Phone Logs 10 369

Worcester Polytechnic Institute
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What is in the Methodology?

Data Data Feature

Collection Preprocessing Engineering

Machine
Learning

Model

Evaluation
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Example of Poster Methodology: Data Collection

enny Welcome £y Mental Health Survey ) Demographics

Over the [act 2 weebke, how aften have
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Mental Health Detection Study Demographic nformation
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hare phone data uch 8 16x1 ogs and
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2. Feeling down, depressed or hopeless.

o0 ©1 02 O3

2 Voluntary Risk: You can share
o e Gta 8 you woul

Je fallng 2

s o a any 3. Troutl aying asiesp,
or seeping 100 much
Co ©1 0Oz O3

4. Feeling tired or having itle energy

Oo D2 O3
. Suicedounioscol .

DepreST Collection
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Allow Mental Heslth Detection.

EM) Writing Prompt

Engsurvey 2

‘Over the last 2 weaks, haw often have
You been bothered by the following

02 O3

c0o ©O1 0z Os

3, Worying to0 much abaut different
thing:
o0 01 0z Os

4 Trouble relasing

o0 01 0z O3

Describe your favorite place:

£ Demographics

Owan O aman

2 What s your age?

O praor rotto ancwer
3. Are you a student?

O Ves.1om s ncergrod st
O Yes.lam a rodusts studont
O Yes. 1m o sttt ()

© o, tameots suers

O et notto snaver

4 Have you rec
depression?

OYes ONo O Prefornot o answer

How do you idenify yourselr?

Oomer

€04 Voice Recording

Recording

Read out loud: "That which
we call a rose by any other
word would smell as sweet."

s Dont Have unt

Describe a good friend:

RECORD

Twiter Usemame:

[ —

[ R— 8 Voice Recording 3

Read out loud: "The North
Wind and the Sun had a
quarrel about which of
them was the stronger.”

Describe a positive
influence in your life:

RECORD

Describe your dream job:

s “

DepreST Collection

SADD Collection

e —

(it

Mental Heafth Datection Study

@ tost e

& Vit

O —
b e e it of

Text Messages (+50.25)

[ —

Text Messages (+50.35)

Paase ense eurprefic 0.

it g for

No Text Data(+$0)

Plassa e you e 1

i a0 10
b g f s B

No Text Data(+$0)

Y b Ecthared by ot showing

Women experience
depression at roughly
twice the rate of men.

Ouer the kst 2 wesks, o aften have

Overthe st 2 weeks, haw often
nave you bee ‘yau been bothered by the follawing
proviems?

i bothered by any of the
follawing problem™

Read out loud: “The North
Wind and the Sun had a
quarrel about which of
them was the stronger"

e am uncnr et
17 down, depressed o hopee

02

o}

Trauble fllng

o1 0z 03

Describe a positive
influence in your Iife:

o1 02 O3

o o cich
———
(SR ——

Stereotype Threat i .

of a st i

Damagrapie intarmation.

Oun Onm Owu Ou

Owm  Owamn  Oomm

EN o DR EE—
—_—

Read out loud: "That which
Describe a good friend: we call a rose by any other
word would smell as sweet.

T e BT E—T—

Describe your favorite plact

[T — e s
i you art
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Example of Poster Methods: Data Preprocessing

Creating the Time Series

We create 72 sets of time series from the
logs using the communication count,
average length of communications, and
number of contacts. We aggregate these
values every 4, 6, 12, & 24 hours. All text
log time series for a single participant:

4-hour aggregation

Worcester Polytechnic Institute
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Example of Poster Methods: FE & ML

Text Message Modeals

Screening with Text Messages

Machine learning methods
selected from 245 content
features involving:

* Word category frequencies
* POS tag frequencies

» Sentiment

* Volume

Most Important Text Features

A m Not Depressed
4 Depressed

Generating Text Messages

Goal: create a corpus of public texts from PHQ-9 labeled participants.

Generative Adversarial Networks (GANs) generate realistic data by
using a generator and a discriminator engaged in a minimax game.
GANs must be modified to generate sequences of discrete tokens® as
1. words are not differentiable leading to no policy updates and

2. sequences are only scored when complete so rewards are sparse.

Evolution of Text Generation Models

I Screening Methodology

Empath®
Lexical
Categories

Machine Learning Pipeline

KNN Depression

Classifier® Screening
Predictions

FEL Tooll-(l't]

kNN, LR, Depression

Screening
Predictions

SVC, & RF
Classifierss

Labeled Feature Word
Text Extraction Category
Messages Frequencies

Classifiers

StudentSADD Scripted Voice + Text  AudiBERT Depression (PHQ-9210)
DepreST Unscripted Voice 1 AudiBERT Depression (PHQ-9210)
DepreST Unscripted Voice 1 AudiBERT Anxiety (GAD-7210)
DepreST Log Timeseries GRU Depression (PHQ-9210)
DepreST Log Timeseries GRU Anxiety (GAD-7210)
35
idestion
Screening

Worcester Polytechnic Institute
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What are Results?

Dataset

Model
Interpretation

Worcester Polytechnic Institute
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Examples of Results: Machine Learning Results

' Screening with Text Messages ‘

Text Message Models

b it Machine learning methods
o Bt selected from 245 content
o features involving:
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Logistic regression models only used 10 features from two weeks
of texts, achieving an F1 = 0.81 with three principal components®.
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.
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P
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Depression (PHQ-9210)

F1=0.69 +0.00

DepreST

Unscripted Voice 1

AudiBERT

Depression (PHQ-Qle)

DepreST

Unscripted Voice 1

AudiBERT

Anxiety (GAD-7210)

F1=0.66 £0.01
F1=0.79 £ 0.04

DepreST

Log Timeseries

GRU

Depression (PHQ-9210)

F1=0.68 £0.00

DepreST

Log Timeseries

GRU

Anxiety (GAD-7210)

F1=0.48 £ 0.09
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Example of Results: Additional

Other Model Output Model Interpretation

' Model Interpretability

. Training SeqGAN Mud%; s ] | ~ :\:::1:3:911 Selected F:at:;essf[onr“l"::rie:‘ . .R:,:D:,‘,‘,‘wmed;e:m:i E;,::ln
& P3. 1963 texts SeqGAN can still be coting | mmm w g gt e e s Sudaldeaton
i effective when trained decton | WA 4 W mum e - W | m——— s wa .
o8t on around 2000 texts, JO v  hens B
dos though most of the aung | mwasmn & m w8 0| | e m s oa s
participants have under e LT Tl e
| A 200 texts. We only need B T R e
=1 1 N 1 = 2 = 1 20 EFIDC"IE to train' PCA on Chi-squared Selected Features PCA on All Features
Fpochs ’ R S I A ey
Generated Text Message Examples a . : - ': .,
sure how much how awesome! = let me know when you see Monday § ’ § W '
aww they’ll be like soon  sure sound fine so = ok. i can come tonight flae 5oAM L
actually kids were on this way home » should to make the toll on lol H $ f .-
! ;f 'y '.-: e " .

First Principal Component First Principal Component
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What is in a Conclusion?

Approach Main Results

Limitations &
Future Work

Contributions

Worcester Polytechnic Institute
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BExxamples-of Conclusions are Optional

I DO NOT

RECCOMEND

Compare the screening ability of real texts with texts generated
by GANSs built on texts from single and multiple participants.
Further anonymize generated texts by replacing named entities.
* Evaluate the appropriateness of popular metrics for this task.

Worcester Polytechnic Institute
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Depression Screening with Text Messages

ML Tlachac, Data Science PhD Candidate

2in 5 graduate students
suffer from depression?.

Despite being the most

Suicide is the 2" |eading cause of death for US
adults under 30. Globally depression is the
leading cause of disability, costing $1 trillion®.

avarage F1

Screening with Text Messages

Text Message Models

M sve
k- hE
- in

Machine learning methods
selected from 245 content
features involving:

Most Important Text Features

Advisor: Elke Rundensteiner

Generating Text Messages

Goal: create a corpus of public texts from PHQ-9 labeled participants.

Generative Adversarial Networks (GANs) generate realistic data by
using a generator and a discriminator engaged in a minimax game.

Evolution of Text Generation Models

Year: 2020
Format: In Person

treatable mental health e = Word category frequencies GANs must be modified to generate sequences of discrete tokens® as
disorder?, it takes 11 years + POS tag frequencies 1. words are not differentiable leading to no policy updates and I h e Ba d
on average to get treated3. 0gs « Sentiment 2. sequences are only scored when complete so rewards are sparse.

* Volume

- Story too big for

s1 . A m  Not Depressed
Given texting popularity, text messages could be S iralar i pA R e a p O Ste r
used to passively screen for depression but only a We deploy SeqGAN to determine the impact of text quantity on
petq{ BN AL A A A &
third of people are willing to share this modality*. generation quality measured by negative log-likelihood (NLL). SeqGAN -
L e 1. trains a stochastic i icy wi i i g
g . parameterized policy with a policy gradient and
“ _37 politics{ mmm ® A . 2. estimates rewards using a Monte Carlo search with a roll-out policy. ?
o
§ ship{ mm = " . . . Training SeqGAN Models y fu t u re W O r k .
Interpretation? Treatment E Lo ! P s
Q N " * Qetupatior | mm— A i §Fi fidias | SeqGAN can still be
0-4 . ot Depresse, . ' real_estate | MAES——— o . effective when trained T h G d
5-9 Mildly Symptomatic  Monitor it ][ SN~ . on around 2000 texts, e O O
10-14 Mild Depression Support i [ i though most of the
15-19 Moderate Depression Treatment A7 255 A o e 4 participants have under °
20+ Severe Depression  Treatment Frequency 200 texts. We only need m p O I a n W O I S

Moodable*/EMU data: retrospectively-harvested
crowd-sourced Smartphone & social media data.
PHQ-9 was deployed to obtain a depression label.
151 participants sent texts within the last year>.

Logistic regression models only used 10 features from two weeks
of texts, achieving an F1 = 0.81 with three principal components®.

PCA with Top Text Features

LR with 14 days of Texts

20 epochs to train.

1 5 u 16 -8 % |

Epochs

Generated Text Message Examples
sure how much how awesome! = let me know when you see Monday

in red

~ = e ! aww they’ll be like soon = sure sound fine so = ok. i can come tonight o G e n e ra te d teXt

! Distribution of Text PHQ-8 Scares o PEE T . [ actually kids were on this way home = should to make the toll on lol | f

::: Al ko examples are run
o sl . 2 |ee % %, 4 Future Work in Generating Texts f d
N LA L | g or readers
=y L i % 24 e T * Compare the screening ability of real texts with texts generated

: : & . o8 by GANSs built on texts from single and multiple participants.

o é < * Further anonymize generated texts by replacing named entities.

PHO-0 soores. o o b 1 z 3 a [}

* Evaluate the appropriateness of popular metrics for this task.

First Principal Cormpanent Number of Principal Components
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DepreST Collection

SADD Collection

Mental Health Detection Study

EA,) Mental Health Survey

Plaasa entar your prolifc 10,

Accepting e permissicns wil alkw e spp o
take acne Bima snapshat of tha data.

Extra cormpensstion

No Text Data(+$0) oe

Text Messages (+50.25) o o o a o . .

Flaiia entes your piolinc 10

Accoqiion e pe
Tk 800w N

Exira compenaatian for texts
No Text Data(+50)
Text Messages (+50.35)

5t 2 washs, how afton have Damograpiic Infarmation

Mobile Data Collections for Mental lliness Screening

ML Tlachac, Data Science PhD Candidate f:M U TI V O

Advisor: Elke Rundensteiner

[

X

EM,I Vaice Recarding 3

I Voice Recording 1

Over the a8t 2 weeks, how often Ower the last 2 weeks, how often have
hawe you been bothered by any of the youbeen bothered by the fallawing
following problams? proglems? Read out loud: "The North
oo Wind and the Sun had a
quarrel about which of

them was the stronger.

o v,

Women experience
depression at roughly
twice the rate of men.

° ewl o8 o
Efa g dina) EM:IVioice Recording 2
Qwa
O s
Cass Describe a positive

O e influence in your life:

ions wil alkw the 3 16
asshit of the dil -
e (2 Prefer nat 4o answer

) Yes, b am a studem Dther]

Stereotype Threat |
reminder of a stereotype impacts behavi

hered by any of the following

skt
Read out loud: "That which

Describe a good friend: we call a rose by any other
Describe your favorite place: word would smell as sweet

e u.» =
witter Lisermiame

Allgw Mesal Health Detection..
10 apcess your contacts?
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Mobile Depression Screening with Time Series Ye ar: 2 O 2 1

of Tgxt L.ogs ;and C.aII Logs | =M UTI\/O
WPI ML Tlachac, Veron‘:::rgﬁ:sl:z:r;:;:::g::igﬁ::il:ailke Rundensteiner f F O rm a t : I n P e r. s O n

4-page paper @ |IEEE BHI-BSN 2021

Creating the Time Series Machine Learning Pipeline

Research Questions

Given logs, is it best to screen for depression with: We create 72 sets of time series from the KNN Depression
1. Text logs or call logs? logs using the communication count, Log Data Classifiers Screening
2. Incoming, outgoing, or all communications? average length of communications, and
3. Communication count, average length, or contacts? number of contacts. We aggregate these
4. Aggregation intervals of 4, 6, 12 or 24 hours? values every 4, 6, 12, & 24 hours. All text
5. Time series or features from time series? log time series for a single participant: Th e Ba d
A, | 4-hour aggregation -
Th D t kNN, LR, Depress_ion
) | sl =l L Solors are
Two weeks of logs from the Moodable’ and EMU? | . [\l{ 4 - WA ATl
datasegs labeled with PHQ-9 de.PreSSion Scree?ning ’ ~;- e e Cr— Screening Results u n ba Ia nced
scores®. If PHQ-9 = 10, screen positive for depression. N .
- Text Participants e Dl'smiufw" Call Participants ::: e - I; Incemeg e hmk.ﬂmmm Lm;:“i = ® TI tI e Of re S u It p I Ots
1 [ Ougeing || 20 —
[ ] o [ s o are too small to read
N E TR AR=AELE A
- ﬁl I‘ | ‘ I H | H | “ | H b - H *_ | {, } H | The Good

[] 5 0 0 15
PHQ-9 Score PHO-2 Score

. TSFEL et Avrage m.i _ ° L a r g e f O n t

The 312 participants shared different types of logs:

All Incoming ° FU N pl pel Ine

Text logs 245 290 99
Call logs 212 182 197

4 & L M & & L M a0
Aggregaton interval (heurs)

Time Senes, Unsque Contacts
ot Loga. Cat Logs

TSFEL Features. Linique Cantacts
Tt Logs Call Logs
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weeks

(interval)

Research Motivation

WPI

The suicide rate has increased by 35%
since 1999 and suicide is the 2nd leading
cause of death for US adults aged 10-34".

The content of text messages has been
leveraged to screen for depression?. Can
texts also screen for suicidal ideation?

We used the SMS texts in the Moodable?®
and EMU* datasets. Suicidal ideation was
self-reported. We compared

individual

and multiple weeks

(cumulative) of texts. Week 1 is the same.

Interval Weeks

Cumulative Weeks

Week | Participants  Texts  Participants Texts
1 57 2349 57 2349
2 52 2381 62 4730
3 49 1961 62 6691
4 60 2280 66 8971
5 54 2018 66 10989
6 49 1821 66 12810
7 45 1933 66 14743
8 43 1201 Go 15944

Empath®
Lexical
Categories

Feature
Extraction

Word
Category
Frequencies

Screening Methodology

Suicdal
Ildeation
Screening

Averags iC

Avsrage Accuracy

Screening for Suicidal Ideation with Text Messages

ML Tlachac!, Katherine Dixon-Gordont, Elke Rundensteiner?

"Worcester Polytechnic Institute, 'UMass Amherst

Screening with Cumulative Texts

Scraening with Intarval Texts
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1 Week is Best for Screening
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Feature

Chi-squared Selected Features for 1 Week
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Model Interpretability

Randomly Selected Features for 1 Week
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StudentSADD versus DepreST -
Collecting Data During COVID-19 for Rapid Mental lliness Screening i:M UTIVO

ML Tlachac, Miranda Reisch, Ricardo Flores, Elke Rundensteiner

M Wolcome £ Mentol Health Survey ) Damographics EMY) Writing Prompt EMy) Voice Recording My Voice Recording EMY Twitter
Mental Health Detection Study v 12 weeks, o tion
T

Read out loud: "That which

Ouss O

055 O sor Describe a good friend: we call a rose by any other

———— ord vould smell=s sweet o

‘TUP Twitter Usemame.

X

Allow Mental Health Detection...
10 BECESS yOur CONtACts?

SADD Collection

5 %8

ENEJ Study Overview

£M Voice Recording 1 EM:JVoice Recarding 2 EMVoice Recording 3

Study Overview Over t 51 2 weeks, how of

Foisbean botharsd by the folowing

= proble Read out loud: "The North

=) Describe your dream job: Describe a positive Wind and the Sun had a

- influence in your life: quarrel about which of

E e nterst o pleasurs n doing T them was the Stmnuer"
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=] S 2 Mot being able o st0p o ol -
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(7] 3. Tro asleep, staying asleap, 3, Worrying too much about different -

[=F] or sles cl things
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Q d identify yourself?
Dataset SADD DepreST StudentSADD |Scripted Voice + Text  AudiBERT |Depression (PHQ-9210) F1=0.69 £ 0.00
Participants 302 44() DepreST Unscripted Voice 1 AudiBERT |Depression (PHQ-9210) |F1=0.66+0.01
Population Students Prolific DepreST Unscripted Voice 1 AudiBERT |Anxiety (GAD-7210) F1=0.79+0.04
Labels PHQ-9 PHQ-9, GAD-7 DepreST Log Timeseries GRU Depression (PHQ-9210) |F1=0.68+0.00

]

: p DepreST Log Timeseri R Anxi AD-7z21 F1=0.48+0.
Audio Recordings 200 400 epres 0g L GRU ety (G 0) et s I
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Poster Design Tips

All Posters

Know your audience

Less is more

— Minimize content and words

— Text big enough to read

— Readable text/background colors
— Consistent accessible font

Maximize visualizations/tables
— High quality images

Make reading order clear

Printed Posters for In-Person

Use a column-based format

Put while panels over colorful
background to reduce ink

Include a small (white) border in
case printing misalignment

B/ k0
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Presenting Tips

For Beforehand

31

Have an elevator pitch ready
Practice responding to questions

Have notebook to write
suggestions and/or contact info

Plan what you’re going to wear
— Comfortable & clean
— Don't forget to think about shoes

For During

Invite people to your poster
— Even if you are in a conversation
— “Just a quick recap...”

Do not turn your back on any
audience member

Engage in a conversation

Ask questions and adapt
— “Do you know about Catalan #s?”

Have fun!
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